ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
A. Bujan, B. Tóth, A. Bieliauskas, R. Zeyen, C. Housiadas
Nuclear Technology | Volume 169 | Number 1 | January 2010 | Pages 1-17
Technical Paper | Reactor Safety | doi.org/10.13182/NT10-A9339
Articles are hosted by Taylor and Francis Online.
Phébus FP tests study the phenomenology of severe accidents in water-cooled nuclear reactors. The first test, FPT0, was performed with fuel irradiated for only 1 week; the second test, FPT1, was performed with fairly similar boundary conditions but with irradiated fuel (burnup: 23 GWd/t). The objective of this work is, on the one hand, to summarize the main experimental results of these two tests concerning the behavior and transport of fission products and structural materials in the circuit and, on the other hand, to identify or to confirm any modeling weaknesses in the SOPHAEROS/ASTEC V1 module used for interpreting the experimental results. Besides comparison with available experimental data, the main results of the entire circuit analyses are compared with former SOPHAEROS/ASTEC V0 analyses and, for so-called quasi-separated steam generator tubes, with one- and two-dimensional Eulerian and Lagrangian (particle tracking) models.Concerning the transport of iodine vapor species, it is shown that the results obtained are compatible with passage of nonnegligible amounts of the measured highly volatile iodine through circuit to containment. It is also shown that these results depend heavily on the considered kinetics of Cd release from the bundle.