ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Hiroshi Matsumura, Norikazu Kinoshita, Akihiro Toyoda, Kazuyoshi Masumoto, Kotaro Bessho, Masayuki Hagiwara, Yutaka Yamanoi
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 979-983
Miscellaneous | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Measurements and Instrumentation | doi.org/10.13182/NT168-979
Articles are hosted by Taylor and Francis Online.
The beam power in a new project of a long-baseline neutrino oscillation experiment from Tokai to Kamioka (the T2K experiment) will be approximately 100 times higher than that in a substantial long-baseline neutrino oscillation experiment from the High Energy Accelerator Research Organization (KEK) to Kamioka (the K2K experiment). In the T2K experiment, radionuclides at serious activity levels will be produced in a target, magnetic horns, and partially dissolved into the cooling water. Radionuclides at serious activity levels will also be produced in the cooling water. Therefore, we measured the total activity and distribution of 7Be, 22Na, 54Mn, 57Co, 60Co, 88Y, 101gRh, 102mRh, and 110mAg collected on a demineralizer in the K2K water cooling system, in order to consider reducing both exposure to personnel from the demineralizer and radioactivity released by draining the cooling water at regular intervals in the T2K experiment. The total activity of the individual nuclides was estimated to range from 0.9 MBq to 0.7 GBq at the end of the 2-yr K2K operation. When the results are projected to the T2K experiment, 70 GBq of 7Be and 6 GBq of 22Na are particularly high, and shielding from the radiation must be provided for the entire water system. Half of the demineralizer was saturated with the Al, Cu, and Ag ions dissolved from the target and magnetic horns. When the entire column is saturated with the ions, all high activity of 22Na located at the bottom of the demineralizer will be released into the cooling water immediately. Although 88Y, 101gRh, and 102mRh cannot be collected completely because of weak retention by hydrolysis and/or association with colloid, a reduction in the surface area of the Ag metal is possible for new magnetic horns and will result in a decrease of the activities in the cooling water.