ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Milan Marek
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 943-948
Miscellaneous | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radioactive Waste Management and Disposal | doi.org/10.13182/NT09-A9331
Articles are hosted by Taylor and Francis Online.
To support the transport of spent nuclear fuel from Czech research reactors of Russian origin back to the Russian Federation, a special VPVR/M transport cask was designed at SKODA JS, Czech Republic. In 2007, the shipment of 16 VPVR/M casks with EK-10 fuel of 10 wt% 235U, IRT-2M fuel of 80 wt% 235U, and IRT-2M fuel of 36 wt% 235U expended at the LVR-15 research facility since 1957 was realized. The VPVR/M cask was designed for all fuel types used in Russian research reactors of similar designs, which were built in many countries outside of Russia.A revised version of the ORIGEN 2.2 code was used for depletion calculations of 35 types of irradiated fuel. Shielding analyses of the VPVR/M cask were performed using the DORT code with the revised BUGLE-96 multigroup cross-section library based on ENDF/B-VI Release 3. The criticality of the cask loaded with the highest-reactivity fuel was evaluated with the MCNP code using the DLC-200 cross-section data library using the fresh fuel approach.The isotopic inventory of IRT-3M fuel of 36 wt% 235U burned up to 184 MWd/kg U was identified as the bounding value. The sources of gamma rays for shielding calculations, neutron sources for shielding and criticality calculations, and heat sources were consequently evaluated. The original design of the cask was optimized with respect to the minimum weight needed for the conservation of the required shielding properties. In compliance with the regulatory requirements for spent-fuel storage and transport casks, the subcriticality of the system met the criticality safety criterion of keff < 0.95 for all the fuel types evaluated. The cask fulfilled Czech safety criteria as well as International Atomic Energy Agency regulations for subcriticality, shielding, heat cooling, and structure requirements.