ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Milan Marek
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 943-948
Miscellaneous | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radioactive Waste Management and Disposal | doi.org/10.13182/NT09-A9331
Articles are hosted by Taylor and Francis Online.
To support the transport of spent nuclear fuel from Czech research reactors of Russian origin back to the Russian Federation, a special VPVR/M transport cask was designed at SKODA JS, Czech Republic. In 2007, the shipment of 16 VPVR/M casks with EK-10 fuel of 10 wt% 235U, IRT-2M fuel of 80 wt% 235U, and IRT-2M fuel of 36 wt% 235U expended at the LVR-15 research facility since 1957 was realized. The VPVR/M cask was designed for all fuel types used in Russian research reactors of similar designs, which were built in many countries outside of Russia.A revised version of the ORIGEN 2.2 code was used for depletion calculations of 35 types of irradiated fuel. Shielding analyses of the VPVR/M cask were performed using the DORT code with the revised BUGLE-96 multigroup cross-section library based on ENDF/B-VI Release 3. The criticality of the cask loaded with the highest-reactivity fuel was evaluated with the MCNP code using the DLC-200 cross-section data library using the fresh fuel approach.The isotopic inventory of IRT-3M fuel of 36 wt% 235U burned up to 184 MWd/kg U was identified as the bounding value. The sources of gamma rays for shielding calculations, neutron sources for shielding and criticality calculations, and heat sources were consequently evaluated. The original design of the cask was optimized with respect to the minimum weight needed for the conservation of the required shielding properties. In compliance with the regulatory requirements for spent-fuel storage and transport casks, the subcriticality of the system met the criticality safety criterion of keff < 0.95 for all the fuel types evaluated. The cask fulfilled Czech safety criteria as well as International Atomic Energy Agency regulations for subcriticality, shielding, heat cooling, and structure requirements.