ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Milan Marek
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 943-948
Miscellaneous | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radioactive Waste Management and Disposal | doi.org/10.13182/NT09-A9331
Articles are hosted by Taylor and Francis Online.
To support the transport of spent nuclear fuel from Czech research reactors of Russian origin back to the Russian Federation, a special VPVR/M transport cask was designed at SKODA JS, Czech Republic. In 2007, the shipment of 16 VPVR/M casks with EK-10 fuel of 10 wt% 235U, IRT-2M fuel of 80 wt% 235U, and IRT-2M fuel of 36 wt% 235U expended at the LVR-15 research facility since 1957 was realized. The VPVR/M cask was designed for all fuel types used in Russian research reactors of similar designs, which were built in many countries outside of Russia.A revised version of the ORIGEN 2.2 code was used for depletion calculations of 35 types of irradiated fuel. Shielding analyses of the VPVR/M cask were performed using the DORT code with the revised BUGLE-96 multigroup cross-section library based on ENDF/B-VI Release 3. The criticality of the cask loaded with the highest-reactivity fuel was evaluated with the MCNP code using the DLC-200 cross-section data library using the fresh fuel approach.The isotopic inventory of IRT-3M fuel of 36 wt% 235U burned up to 184 MWd/kg U was identified as the bounding value. The sources of gamma rays for shielding calculations, neutron sources for shielding and criticality calculations, and heat sources were consequently evaluated. The original design of the cask was optimized with respect to the minimum weight needed for the conservation of the required shielding properties. In compliance with the regulatory requirements for spent-fuel storage and transport casks, the subcriticality of the system met the criticality safety criterion of keff < 0.95 for all the fuel types evaluated. The cask fulfilled Czech safety criteria as well as International Atomic Energy Agency regulations for subcriticality, shielding, heat cooling, and structure requirements.