ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Min Woo Seo, Jae Woo Park
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 938-942
Miscellaneous | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection | doi.org/10.13182/NT09-A9330
Articles are hosted by Taylor and Francis Online.
A fiber-optic dosimeter model is constructed with a small piece of Gd2SiO5 (GSO) scintillator optically attached to a low attenuating plastic optical fiber. The lights generated in the scintillator are transmitted through the fiber and read by a current-type photomultiplier tube (PMT). The dosimeter model was tested with two 60Co standard sources of 1.85 and 37 MBq by measuring the PMT current as a function of the source-to-detector distance. It was then tested in a 60Co irradiation chamber with an activity of [approximately]244.2 TBq. MCNPX simulations were performed for the source and dosimeter arrangements to calculate the deposited energy in the GSO scintillator. When tested with standard 60Co sources of 1.85 and 37 MBq, the dosimeter model did not produce satisfactory results. However, better results were obtained with the higher-activity source. In the test in a 60Co irradiation chamber of 244.2 TBq, the measured data well coincide with the MCNPX simulation results. In a direct comparison with a Farmer-type ion chamber, it is found the dosimeter readings can be simply converted to the air kerma doses by proper calibration.