ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
N. Prolingheuer, M. Herbst, B. Heuel-Fabianek, R. Moormann, R. Nabbi, B. Schlögl, J. Vanderborght
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 924-930
Dose/Dose Rate | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection | doi.org/10.13182/NT09-A9328
Articles are hosted by Taylor and Francis Online.
At sites with powerful particle accelerators, the problem of groundwater activation by direct neutron radiation arises. Licensing of particle accelerators requires evidence that groundwater activation is within the legal limits and thus will not endanger workers, the public, or the environment.In this study we focus on the following radionuclides: 14C, 41Ca, 45Ca, 36Cl, 55Co, 57Co, 60Co, 3H, 54Mn, 24Na, 32P, 35S, 32Si, and 50V. The conventional approach for calculating activation of soil and groundwater is described and utilized for a fictive 5-MW proton accelerator at Jülich, Germany, with a beam loss of 1 Wm-1. An updated overview of partition coefficients for relevant radionuclides in sand, clay, loam, and organic soils is presented. Based on the two aforementioned methods, groundwater activation is estimated with a simplified homogeneous groundwater transport model. The results indicate 3H, 14C, and 36Cl as the most relevant radionuclides concerning the resultant activity concentrations and estimated dose rates at the site boundary. For this fictive test case, the site boundary is located a distance 250 m downstream of the accelerator, which leads to acceptable risk for the public, given the legal standards.