ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Ahmad K. Al-Basheer, Glenn E. Sjoden, Monica Ghita
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 906-918
Dose/Dose Rate | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection | doi.org/10.13182/NT09-A9326
Articles are hosted by Taylor and Francis Online.
For low-energy photons, charged-particle equilibrium usually exists within the patient treatment volume, in which case the photon absorbed dose D is equal to the collisional kerma Kc; however, this is not true for the dose buildup region near the surface of the patient or at interfaces of dissimilar materials, such as tissue/lung, where corrections for secondary electron transport may be significant. This is readily treated in Monte Carlo codes, yet difficult to treat explicitly in deterministic codes due to the large optical thicknesses and added numerical complexities in reaching convergence in photon-electron transport problems. To properly treat three-dimensional electron transport physics deterministically, yet still achieve reasonably fast and accurate whole-body computation times using high-energy photons, angular-energy-dependent transport "electron dose kernels" (EDK-SN) have been developed. These kernels were derived via full physics Monte Carlo electron transport simulations and are applied using scaling based on rapid deterministic photon solutions over the problem phase-space, thereby accounting for the dose from charged-particle electron transport. As a result, accurate whole-body doses may be rapidly achieved for high-energy photon sources by performing a single deterministic SN multigroup photon calculation on a parallel cluster with PENTRAN, then linking the SN-derived photon fluxes and net currents to Monte Carlo-based EDKs to account for a full physics dose. Water phantom results using a uniform 0- to 8-MeV step uniform beam indicate that the dose can be accurately obtained within the uncertainty of a full physics Monte Carlo simulation. Followup work will implement this method on phantoms.