ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Yoshiko Harima, Yukio Sakamoto, Naohiro Kurosawa, Akinao Shimizu
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 861-866
Shielding | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection | doi.org/10.13182/NT09-A9319
Articles are hosted by Taylor and Francis Online.
The geometric-progression (G-P) formula can accurately reproduce buildup factor data up to depths of 40 mean free paths (mfp) within a few percent. This formula was improved to apply to depths up to 100 mfp, using the buildup factor data of Shimizu et al. (2004) calculated with the Invariant Embedding method.The behavior of the K parameter as a function of distance was examined, and a new formula was introduced from the depth of Xm ([approximately]40 mfp). The fitting parameters were determined using a minimizing procedure of the maximum fractional deviation (MMD). Within some sets of parameters determined by the MMD fit, one set of parameters was selected that realized the interpolation of the buildup factor with regard to energy, using interpolated G-P parameters. Consequently, discrete buildup factor data were converted to continuous data with regard to both energy and distance.