ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
C. Carrapiço, E. Berthoumieux, I. F. Gonçalves, F. Gunsing, A. Mengoni, P. Vaz, V. Vlachoudis, The n_TOF Collaboration
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 837-842
MC Calculations | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Measurements and Instrumentation | doi.org/10.13182/NT09-A9315
Articles are hosted by Taylor and Francis Online.
The n_TOF facility is a time-of-flight (TOF) spectrometer dedicated to studying neutron-induced reactions, mainly neutron capture and fission cross sections. The spectrometer consists of a pulsed proton beam (7 × 1012 protons/pulse, 6-ns width, 20 GeV/c) impinging on an 80 × 80 × 60 cm3 lead target. The neutrons produced by spallation reactions reach the detector station at 185 m through an evacuated tube. There, neutron-induced reactions are studied by using the TOF technique. The facility is unique for its high instantaneous neutron flux (of the order 106 neutrons/cm2 per proton pulse at 185 m), an excellent energy resolution, low background conditions, and a very low duty cycle. This combination allows one to measure neutron capture and fission cross sections in the energy range from 1 eV to 250 MeV with high precision.For the analysis of the data in the resolved resonance region up 1 MeV, a precise and accurate knowledge of the distribution of the energy resolution is mandatory. The only way to obtain the resolution function in a detailed way is to use Monte Carlo simulations together with the experimental verification with well-known resonance reactions at selected energies. Such calculations and an analytical fit of the results have been performed for the target setup of the first phase of data taking.Monte Carlo simulations performed for the assessment and comparison of the resolution function for different target configurations are reported. The different resolution functions are compared and discussed.