ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
C. Carrapiço, E. Berthoumieux, I. F. Gonçalves, F. Gunsing, A. Mengoni, P. Vaz, V. Vlachoudis, The n_TOF Collaboration
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 837-842
MC Calculations | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Measurements and Instrumentation | doi.org/10.13182/NT09-A9315
Articles are hosted by Taylor and Francis Online.
The n_TOF facility is a time-of-flight (TOF) spectrometer dedicated to studying neutron-induced reactions, mainly neutron capture and fission cross sections. The spectrometer consists of a pulsed proton beam (7 × 1012 protons/pulse, 6-ns width, 20 GeV/c) impinging on an 80 × 80 × 60 cm3 lead target. The neutrons produced by spallation reactions reach the detector station at 185 m through an evacuated tube. There, neutron-induced reactions are studied by using the TOF technique. The facility is unique for its high instantaneous neutron flux (of the order 106 neutrons/cm2 per proton pulse at 185 m), an excellent energy resolution, low background conditions, and a very low duty cycle. This combination allows one to measure neutron capture and fission cross sections in the energy range from 1 eV to 250 MeV with high precision.For the analysis of the data in the resolved resonance region up 1 MeV, a precise and accurate knowledge of the distribution of the energy resolution is mandatory. The only way to obtain the resolution function in a detailed way is to use Monte Carlo simulations together with the experimental verification with well-known resonance reactions at selected energies. Such calculations and an analytical fit of the results have been performed for the target setup of the first phase of data taking.Monte Carlo simulations performed for the assessment and comparison of the resolution function for different target configurations are reported. The different resolution functions are compared and discussed.