ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Guoli Li, Zhu Yang, Hui Lin, Jiabing Huang, Jia Jing, Aidong Wu, Yican Wu
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 815-819
MC Calculations | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection | doi.org/10.13182/NT09-A9311
Articles are hosted by Taylor and Francis Online.
The Monte Carlo method is a stochastic statistic algorithm. It is one of the most accurate dose calculation methods, but its application in clinic is limited because of the long computation time. Generally, to accelerate Monte Carlo simulation and reduce stochastic noise, a digital filtering technique is used to smooth a rough dose distribution (includes evident noise) to a satisfied one. Different types of filters have been applied, such as Gaussian filters, Savitzky-Golay filters, etc., but the ability of a single filtering filter is limited. Therefore, a hybrid filter combining those filtering techniques was used. Two types of mixture methods - parallel and cascade - with three-dimensional Gaussian and Savitzky-Golay filters were researched. In addition, a method that simplifies the mixture filter structure using an equivalent convolution kernel based on convolution theory was introduced. With simulation data from a standard phantom, the rough dose distributions and the dose distribution smoothed by the two types of mixture filters were compared with that of the "benchmark" one. Test results showed that the two types of mixture filters can suppress much of the noise added in Monte Carlo dose distributions and enhance its visualization. As for the research's test cases, the filtering effect of the cascade mixture filter was slightly better than that of the parallel mixture filter. Filter combinations can provide favorable filtering effects. The filtering effects of different mixture methods are not uniform. The cascade mixture filter has a better filtering effect than the parallel mixture filter.