ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
S. D. Randeniya, P. J. Taddei, W. D. Newhauser, P. Yepes
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 810-814
MC Calculations | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection | doi.org/10.13182/NT09-A9310
Articles are hosted by Taylor and Francis Online.
Monte Carlo simulations of an ocular treatment beamline consisting of a nozzle and a water phantom were carried out using MCNPX, GEANT4, and FLUKA to compare the dosimetric accuracy and the simulation efficiency of the codes. Simulated central axis percent depth-dose profiles and cross-field dose profiles were compared with experimentally measured data for the comparison. Simulation speed was evaluated by comparing the number of proton histories simulated per second using each code. The results indicate that all the Monte Carlo transport codes calculate sufficiently accurate proton dose distributions in the eye and that the FLUKA transport code has the highest simulation efficiency.