ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
M. Brugger, P. Cennini, A. Ferrari, E. Lebbos, V. Vlachoudis
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 752-757
Heavy Ion Transport | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Measurements and Instrumentation | doi.org/10.13182/NT09-A9301
Articles are hosted by Taylor and Francis Online.
The n_TOF facility, a spallation neutron source, uses a pure lead target to produce neutrons with a 20-GeV proton beam extracted from the CERN Proton Synchrotron. After 4 yr of operation and [approximately]3 yr of cooling, the present spallation target is damaged and was moved to its provisional storage place in the n_TOF service gallery and will be later transferred to a Swiss repository. In this study, to deal with the removal and storage of the lead target, detailed isotope production and residual dose rate calculations were performed with the FLUKA Monte Carlo code. The study further includes a detailed analysis of three-dimensional residual dose rate fields around the target and through the installation pit. It addresses critical design parameters for the new target and successfully compares the simulation results to recently available measurement data. FLUKA allows residual dose rates to be calculated using two different approaches: a one-step approach that simultaneously takes into account production and decay (built-in) and a two-step approach that allows for flexible geometries between the isotope production and sampling of the decay products (customized). This work shows the clear advantage of performing Monte Carlo calculations prior to interventions and waste disposal and the importance of a detailed description of all the installation components, a complete chemical composition inventory, and a correct irradiation profile.