ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Pablo Yepes, Sharmalee Randeniya, Phillip J. Taddei, Wayne D. Newhauser
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 736-740
Proton Therapy | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection | doi.org/10.13182/NT09-A9298
Articles are hosted by Taylor and Francis Online.
Monte Carlo codes are utilized for accurate dose calculations in proton radiation therapy research. While they are superior in accuracy to commonly used analytical dose calculations, they require significantly longer computation times. The aim of this work is to characterize a Monte Carlo track-repeating algorithm to increase computation speed without compromising dosimetric accuracy. The track-repeating approach reduced the CPU time required for a complete dose calculation in voxelized patient anatomy by more than two orders of magnitude, while on average reproducing the results from the traditional Monte Carlo approach within 4% dose difference and within 1-mm distance to agreement.