ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Florent Martinetti, Laurent Donadille, Sabine Delacroix, Catherine Nauraye, Aurélien De Oliveira, Joël Herault, Isabelle Clairand
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 721-727
Proton Therapy | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection | doi.org/10.13182/NT09-A9296
Articles are hosted by Taylor and Francis Online.
A Monte Carlo modeling tool was applied at the Institut-Curie Centre de Protonthérapie d'Orsay, France, to simulate the passively scattered beam line used for treatment of ocular melanoma. The primary aim of this study is to validate the model for subsequent calculation of patient doses due to secondary neutrons.The Monte Carlo code MCNPX is used here to model the geometry of the beam line. The beam parameters at the entrance of the ophthalmologic beam line are not well known (beam emittance, lateral distribution, and energy spread). Hence, to accurately implement the beam source in the model, we need to calculate and measure these parameters in the first step of this study. Then, we perform comparisons between calculated and measured proton absorbed dose profiles under various scattering conditions.Comparisons between calculated and measured depth versus dose profiles show discrepancies <0.6 mm (range) and <1.1 mm (beam size and penumbra) for the lateral dose profiles. Hence, calculated relative dose profiles are considered to be correctly described by the Monte Carlo model. Some improvements are still needed to reproduce absolute dose profiles. This study should lead to the use of the numerical model for radiation protection applications.