ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Hui Lin, Liangfeng Xu, Jia Jing, Guoli Li, Yang Zhu, Dong-Sheng Wu, Yuan-Ying Xu, Yican Wu
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 706-712
Accelerators | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Accelerators | doi.org/10.13182/NT09-A9294
Articles are hosted by Taylor and Francis Online.
Photon external radiotherapy of cancer takes advantage of the physical interaction of the photon and the secondary electron with biological tissue to kill cancer cells. The current linac is important equipment for producing an X-ray. The Monte Carlo method has been demonstrated to be the most accurate method for radiotherapy issues such as dose calculation and plan verification. However, its application in the clinic requires detailed information on the beam characteristics. A large quantity of the consumptive time for multiple simulation phases, such as linac treatment head simulation, beam trimmer module simulation, and patient/phantom simulation, and storage for the phase-space file (PSF), which records the information of the transported particle, are two knotty issues also. Therefore, a set of simple and convenient multiple source models (MSMs) including five subsources for regular fields from 3 × 3 cm to 30 × 30 cm was built, which is based on a VARIAN 2300C 6 MV-X beam simulated by the Monte Carlo code BEAMnrc and produced by BEAMnrc's beam characteristics analysis utility BEAMDP (BEAM Data Processor). This MSM reduced the three simulation phases to one to effectively decrease the consumptive time. The storage issue about the PSF was also solved for MSM's small volume. The dose distribution of the five-source model in a homogeneous phantom was compared with that of the full linac simulation and measurement data to verify reliability. The characteristics of the subsources were analyzed to present their feature. This work provided the base for implementing the Monte Carlo algorithm into the Accurate Radiotherapy System.