ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
M. Brugger, D. Forkel-Wirth, S. Roesler
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 665-669
Accelerators | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection | doi.org/10.13182/NT09-A9286
Articles are hosted by Taylor and Francis Online.
The FLUKA code is used to simulate the residual dose rates around a typical beam absorber considering various scenarios. The latter include carbon, copper, and tungsten as jaw materials, different beam energies, protons, and lead ion beams as well as different irradiation and cooling times. Using the dose rate maximum close to the absorber surface, the study investigates the cooling time dependence for the different scenarios. It is found to be similar for all jaw materials and beam energies. The dose rate scales with energy as E0.83 and with the number of nucleons when comparing proton beam with lead ions. After a sufficiently long cooling time, a few radionuclides produced in the steel tank, such as 56Co, 58Co, 48V, and 54Mn, dominate the dose rate. The study can be easily extended to other materials or irradiation scenarios and can be applied to first evaluations of given accelerator design options.