ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Gabriel Ghita, Glenn Sjoden, James Baciak
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 620-628
Neutron Measurements | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Measurements and Instrumentation | doi.org/10.13182/NT09-A9279
Articles are hosted by Taylor and Francis Online.
We explore in this study the practical limits in designing a neutron detector array to resolve the spectra from special nuclear material (SNM) neutron sources using 3He detectors. We demonstrate that radiation transport analysis yielded a spectrum unfolding strategy based on the energy structure of the BUGLE-96 cross-section library, with 47 neutron energy groups. The initial computational model used is an isotropic planar source incident on a block of high-density polyethylene moderator. Assuming 3He is diluted throughout the moderator, the 3He(n,p) reaction rate energy group matrix in the block was computed using a completely "flat" neutron source spectrum. Analyzing the energy group matrix, there are neutrons from specific collections of energy groups (energy "bands") that induce a maximum reaction rate in specific locations; we determined that these groups cannot be further differentiated within the energy band using 3He detectors. It was determined that optimal spectral fidelity for SNM detection and characterization is achievable using four spectral bands spanning among groups 1 through 29 (31.8 keV to 17.3 MeV). Using ideal-filter materials to remove the neutrons from different regions of the spectrum, we predicted the maximum neutron spectral resolution obtainable using this approach. To demonstrate our method, we present the optimally detected spectral differences between SNM materials (plutonium and uranium), metal and oxide, using ideal-filter materials. We have also selected a number of candidate filtering materials and, by replacing the ideal filters with real materials, we exemplified our approach with a design of a neutron detector array capable of resolving the spectra from SNM neutron sources using 3He detectors.