ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yukio Sakamoto, Hideo Hirayama, Osamu Sato, Akinao Shimizu
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 585-590
Nuclear Data | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection | doi.org/10.13182/NT09-A9273
Articles are hosted by Taylor and Francis Online.
Bremsstrahlung radiation (hereinafter referred to as bremsstrahlung) production data are needed in the calculation of buildup factors, including the contribution of secondary photons by the photon transport codes, which do not handle electron transport. The emission of bremsstrahlung is treated as exactly as possible by the introduction of EGS4 results. The bremsstrahlung production data by pair-created electrons per pair creation reaction and Compton scattered electrons per Compton scattering are evaluated for 26 elements from hydrogen to uranium and four compounds and mixtures of water, concrete, air, and lead glass. The error estimation of bremsstrahlung contribution to buildup factors by the invariant embedding (IE) method coupled with these bremsstrahlung data is coincident with fully transported results by the EGS4 code within [approximately]5%. By the introduction of bremsstrahlung production data into IE methods, we can calculate buildup factors included by the contribution of those with good accuracy up to deep penetration. By the interpolation and mixture of bremsstrahlung production data for each element, we can evaluate the data of the element or mixture whose data are not evaluated by the EGS4 code.