ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Bin Han, Bryan Bednarz, Yaron Danon, Robert Block, X. George Xu
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 576-579
Shielding Materials | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Measurements and Instrumentation | doi.org/10.13182/NT09-A9246
Articles are hosted by Taylor and Francis Online.
High-energy photons from medical accelerators are used to treat tumors in cancer patients. One consequence is the production of neutrons from photonuclear interactions in the high-Z accelerator components. The release and capture of neutrons produce radioactive nuclei that can irradiate patients and medical personnel. The goal of this study is to develop a method for quantifying the activation of accelerator components using MCNPX. To benchmark this method, we took activation measurements from the irradiation of a series of zinc plates using a 55-MeV electron beam and compared them with MCNPX calculations. The measured cumulative photon-induced activity from 68Zn(,p)67Cu interactions in all of the plates was 10.8 MBq, which is in 5.4% agreement with the calculated value of 10.2 ± 1.1 MBq. Based on these results, a series of simulations were performed in order to optimize the photon- and neutron-induced activity in tungsten for subsequent experiments. The radioactivity from activated short-lived isotopes and subsequent buildup can be significant from repeated accelerator operations during a day. The approach described in this paper is useful in quantifying the origin and the amount of nuclear activation and the buildup of radioactivity.