ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Masaharu Kinno, Ken-Ichi Kimura, Hirokazu Nishida, Yusuke Fujikura, Norichika Katayose, Takao Tanosaki, Koki Ichitsubo, Masaki Takimoto, Hiroichi Tomotake, Ryoetsu Yoshino, Taiichiro Mori, Katsumi Hayashi, Mikio Uematsu, Tomohiro Ogata, Mikihiro Nakata, Mitsuru Sato, Minoru Saito, Mamabu Sato, Akira Hasegawa
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 564-570
Shielding Materials | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Measurements and Instrumentation | doi.org/10.13182/NT09-A9244
Articles are hosted by Taylor and Francis Online.
Screening tests using several reactors were performed to select low-activation raw materials. The number of samples was about 1500. Detailed data were obtained on the concentrations of Co and Eu in low-activation aggregates, low-activation cements, low-activation additives, and low-activation B4C sands. After that, we manufactured various types (1/10, 1/20, 1/30, 1/50, 1/100, 1/300) of low-activation concrete. The term "1/10 low-activation" concrete denotes that the activity reduction rate to ordinary concrete is designed to be 1/10. By admixing with a boron content of [approximately]1 × 1021/cm3, the total residual radioactivity reduction rates of low-activation concrete to ordinary concrete, in units of Di/Ci (Di: concentration of radionuclide i, Ci: clearance level of radionuclide i cited from IAEA-RS-G-1.7), are estimated to range from [approximately]1/300 to 1/10 000. It was concluded that most of the shielding concrete around the advanced boiling water reactor (ABWR) or the advanced pressurized water reactor (APWR) are classified below the clearance level of decommissioning by adopting some suitable types of low-activation concrete.