ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Masaharu Kinno, Ken-Ichi Kimura, Hirokazu Nishida, Yusuke Fujikura, Norichika Katayose, Takao Tanosaki, Koki Ichitsubo, Masaki Takimoto, Hiroichi Tomotake, Ryoetsu Yoshino, Taiichiro Mori, Katsumi Hayashi, Mikio Uematsu, Tomohiro Ogata, Mikihiro Nakata, Mitsuru Sato, Minoru Saito, Mamabu Sato, Akira Hasegawa
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 564-570
Shielding Materials | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Measurements and Instrumentation | doi.org/10.13182/NT09-A9244
Articles are hosted by Taylor and Francis Online.
Screening tests using several reactors were performed to select low-activation raw materials. The number of samples was about 1500. Detailed data were obtained on the concentrations of Co and Eu in low-activation aggregates, low-activation cements, low-activation additives, and low-activation B4C sands. After that, we manufactured various types (1/10, 1/20, 1/30, 1/50, 1/100, 1/300) of low-activation concrete. The term "1/10 low-activation" concrete denotes that the activity reduction rate to ordinary concrete is designed to be 1/10. By admixing with a boron content of [approximately]1 × 1021/cm3, the total residual radioactivity reduction rates of low-activation concrete to ordinary concrete, in units of Di/Ci (Di: concentration of radionuclide i, Ci: clearance level of radionuclide i cited from IAEA-RS-G-1.7), are estimated to range from [approximately]1/300 to 1/10 000. It was concluded that most of the shielding concrete around the advanced boiling water reactor (ABWR) or the advanced pressurized water reactor (APWR) are classified below the clearance level of decommissioning by adopting some suitable types of low-activation concrete.