ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Ernestas Narkunas, Arturas Smaizys, Povilas Poskas
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 533-536
Shielding | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Decontamination/Decommissioning | doi.org/10.13182/NT09-A9239
Articles are hosted by Taylor and Francis Online.
One of the two RBMK-1500 reactor units of the Ignalina nuclear power plant in Lithuania was shut down at the end of 2004 and is currently under decommissioning. The knowledge of radioactive inventory of irradiated materials is very important in the planning of the decommissioning activities and is essential for predicting the radiological impact to personnel during dismantling and management of these materials. The generated radionuclides and their radioactivities in the shield and support plates of the Ignalina Unit 1 RBMK-1500 reactor were modeled in this paper. The reactor shield and support plates, which are made of steel, become radioactive because of intensive neutron irradiation, as they are located close to the bottom and the top of the reactor active core.The assessment of radioactivity levels in shield and support plates was performed using the computer code ORIGEN-S. The list of radionuclides, their radioactivity levels, and the radioactivity dependence on the initial impurity content and cooling time were assessed in this paper. It was found that 3H, 14C, 36Cl, 55Fe, 60Co, 59Ni, and 63Ni are the main contributors to the radioactivity of the shield and support plates.