ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
José Ramón Ramírez Sánchez, John Garcia, R. T. Perry
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 524-527
Shielding | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Protection | doi.org/10.13182/NT09-A9237
Articles are hosted by Taylor and Francis Online.
For environmental reasons, it was proposed to remove the lead shielding in the front panel of a glove box and replace it with another material. This technical note shows that steel could be used. Also, the thickness of steel required to maintain acceptable doses to an operator is determined. Computer modeling and analysis show that 3.175 cm (1¼ in.) of steel is required to maintain the same dose to the operator from gamma radiation as 0.635 cm (¼ in.) of lead. However, it was demonstrated that source placement and geometry play a large role in the operator's dose independent of the structural material because of streaming through ports and windows. Because of streaming, the dose received through the metal in the front panel was not the dominant source of radiation to the operator. It was found that 1.5875 cm (5/8 in.) of steel could be used in the panel.