ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
D. Ene, J.-C. David, D. Doré, B. Rapp, D. Ridikas
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 513-518
Shielding | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Accelerators | doi.org/10.13182/NT09-A9235
Articles are hosted by Taylor and Francis Online.
The purpose of this safety study, carried out within the EURISOL Design Study, was to characterize the radiation environment and design the appropriate shielding of the new-generation radioactive ion beam postaccelerator. Both variants of linac layouts - without stripper (L#1) and with stripper (L#2) - were analyzed using the 132Sn25+ radioactive beam of unprecedented intensity, namely, up to [approximately]1013 particles/s, as reference for simulations. In this work two scenarios were analyzed: (a) an accidental full beam loss during 1 s every day and (b) continuous beam loss of 10-4 m-1 , representing normal operation conditions. Representative loss positions along the accelerator at variable energies of 21, 45.5, 76, 115, and 150 MeVu-1 were investigated. The lost ions were assumed to strike a stopping copper target. Dedicated simulations were performed by means of the PHITS code. The induced radioactivity in the accelerator components, concrete walls, and air inside the tunnel were estimated using the DCHAIN-SP-2001 code based on an external neutron source and spallation products derived from PHITS. Ambient dose equivalent rates due to the residual radiation were calculated with the MCNPX code using photon sources resulting from DCHAIN. The effect of implanted radioactive ions at low energies in the accelerator structure was also assessed.