ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yen-Fu Chen, Yen-Kung Lin, Rong-Jiun Sheu, Shiang-Huei Jiang
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 508-512
Shielding | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Decontamination/Decommissioning | doi.org/10.13182/NT09-A9234
Articles are hosted by Taylor and Francis Online.
The paper aims to estimate the residual activity in the concrete shielding of a nuclear power plant (NPP) after 40 yr of design service life and to determine if the whole massive concrete shielding must be treated as radioactive waste for future decommissioning. The process was a combination of experiment and calculation. Nonradioactive concrete samples collected from the Lungmen NPP were measured to determine the initial concentrations of major, minor, and trace elements in the concrete shielding by neutron activation analysis, inductively coupled plasma-mass spectrometry, and elemental analysis. The neutron flux distribution and depth-dependent cross sections, which were generated by SAS1, in the 60-cm-thick reactor shielding wall and 200-cm-thick dry well wall of the Lungmen NPP were fed to the ORIGEN-S code to calculate the activity distribution in the concrete shielding after 40 yr of reactor full-power operation. Comparing the activity with the exemption levels, it was found that the dry well wall of the Lungmen NPP can be handled as construction waste for immediate decommissioning. However, most of the reactor shielding wall must be treated as radioactive waste even after a 25-yr cooling time.