ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Josselin Morand, Reinhard Hentschel, Andrea Wittig, Raymond Moss, Sabet Hachem, Yuan-Hao Liu, Wolfgang Sauerwein
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 456-461
Shielding | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Protection | doi.org/10.13182/NT09-A9224
Articles are hosted by Taylor and Francis Online.
Monte Carlo simulation of accelerated ions is a standard method in radiation protection. Such simulations have been used to calculate photon and neutron production in a beryllium target of the Essen d(14)+Be Fast Neutron Therapy Facility. In the deuteron case the predominant part of the neutrons is produced by breakup of the input particle, a decay that is not foreseen in standard versions of Monte Carlo codes. Thus, the calculation yields results that are different from measured ones. For simulations of the neutron beam at such facilities, an input description containing the spectral and geometric properties of the neutron and eventually photon beams produced in the target is needed. For the Essen neutron beam, such a description has been obtained by comparison of MCNPX simulations with published data and measurements at a static beam geometry having no background radiation. The validation of the neutron beam input description was obtained by comparing measured and calculated dose distributions in a water phantom using a standard collimator at the treatment gantry.