ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
Junli Li, Shenjin Ming, Yanfeng Cao, Yanli Deng
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 391-398
Shielding | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Protection | doi.org/10.13182/NT09-A9215
Articles are hosted by Taylor and Francis Online.
The X-ray container/vehicle inspection system is a large and complex radiation application facility. To evaluate and optimize the shielding design for the system, a Monte Carlo method including two-step simulation, biasing sampling, and a scattering flag technique has been used to perform the shielding analysis - instead of the traditional empirical formula calculation.When the Monte Carlo method is applied to a complicated large system, some special techniques shall be used to obtain high accuracy and high efficiency in calculation. A special Monte Carlo method based on Geant4, including two-step simulation, biasing sampling, and scattering flag techniques, has been developed in this paper. For the two-step simulation, the first step is to simulate the electron transport inside the tungsten target of a linac and generate X-ray photons; the second step is to simulate the X-ray photon transport in the inspection system. For the biasing sampling, only the photons inside the X-ray beam are simulated and tracked. This allows more photons to reach the inspection system boundary. For the scattering flag, the trace of every photon reaching the inspection system boundary is recorded and stored, thus providing the possibility to tag the main dose contributors to the system boundary and allowing optimization of the shielding design.The simulation results on the inspection system boundary agree well with the measured results, and the key radiation contributors to the radiation dose on the system boundary are found with the scattering flag technique.A special Monte Carlo method combined with two-step simulation, biasing sampling and scattering flag techniques, has been developed and successfully used in the shielding design and optimization in an X-ray container/vehicle inspection system.