ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
I. Murata, H. Miyamaru, I. Kato, S. Yoshida, Y. Mori
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 373-377
Neutron Measurements | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Measurements and Instrumentation | doi.org/10.13182/NT09-A9212
Articles are hosted by Taylor and Francis Online.
Accelerator-based neutron sources are being developed worldwide. In a neutron source, it is essential to know the characteristics of the field including neutrons and gamma rays. However, for the neutron, it is still difficult to measure the energy spectrum below 10 keV. In the present study, a low-energy neutron spectrometer has been designed and developed to examine the accelerator-based neutron source performance. The proposed spectrometer will finally cover neutron energy from the thermal-to-kilo-electron-volt region and is based on a 3He proportional counter. It is positioned in parallel with the incident neutron beam, and the reaction depth distribution is measured. Since the reaction depth distribution varies depending on the incident neutron energy, it can be converted to the neutron energy spectrum. The spectrometer is 50 cm long × 5 cm in diameter with a gas pressure of 0.5 MPa. Recently, a prototype detector was completed, and the signal test is now in progress. The preliminary test result has described the present spectrometer availability as a low-energy neutron spectrometer for an accelerator-based neutron source. Because this kind of spectrometer did not exist heretofore, the spectrometer can be applied to neutron source facilities, e.g., proton accelerators like the Japan Proton Accelerator Research Complex (J-PARC) and nuclear reactors as well as accelerator-based neutron sources for boron neutron capture therapy like the fixed field alternating gradient-emittance-energy recovery internal target (FFAG-ERIT).