ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
V. Macary, E. Berthoumieux, D. Doré, S. Panebianco, D. Ridikas, J-M. Laborie, X. Ledoux
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 287-292
Neutron Measurements | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Fission Reactors | doi.org/10.13182/NT09-A9196
Articles are hosted by Taylor and Francis Online.
Recently, new applications based on detection of delayed neutrons (DNs) or delayed photons produced during photofission have shown the need for new basic nuclear data. Indeed, available data for DNs are scarce, incomplete, and sometimes contradictory. An experimental campaign has been dedicated to DN measurements for some important actinides with a bremsstrahlung end-point energy spectrum up to 20 MeV. The experiments were carried out at the electron accelerator facility ELSA installed at the Commissariat à l'Energie Atomique (CEA) center of Bruyères-le-Châtel, France. Delayed neutrons were measured by 12 3He counters embedded in an annular polyethylene cylinder. Delayed neutron absolute yields were determined. Different irradiation-decay time combinations allowed the extraction of the averaged six-group parameters of DNs. Similarly to the nuclear reactor physics, these groups are formed by lumping DN precursors according to their half-lives. The DN time dependence is then expressed by the sum of group contributions.In this paper, DN absolute yields and six-group parameters for 235U at 15 and 18 MeV and 237Np at 15 MeV are presented. The 235U and 237Np absolute DN yields are found slightly lower than those published in the literature. For 235U, the six-group parameters show no dependence on incident electron energy from 10 to 18 MeV. In addition, the group parameters are very close to those of 237Np. This work helped to resolve the discrepancies of the photofission DN parameters for 235U while the six-group parameters for 237Np are reported for the first time.