ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Charles T. Kelsey IV, Anil K. Prinja
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 257-263
Neutron Data | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Protection | doi.org/10.13182/NT09-A9191
Articles are hosted by Taylor and Francis Online.
The limited availability of coupled multigroup proton/neutron cross-section libraries has hampered the use of deterministic transport methods for solving shielding problems involving energetic proton sources. Libraries are developed from evaluated nuclear data for low-energy transport and the physics models of MCNPX for intermediate-energy transport. They allow deterministic solutions of orbiting spacecraft shielding problems. Evaluated cross sections for protons and neutrons are available for many nuclides up to 150 MeV. NJOY99 is used to produce coupled multigroup proton/neutron cross sections from these. For higher energies, MCNPX is run in its cross-section calculation mode where the XSEX3 program is used to tally double-differential cross sections. The XSEX3 program was modified to discretize the cross sections in energy and output Legendre expansions for angular dependence. The NJOY99 and modified XSEX3 output are combined to produce cross-section libraries for energies up to 400 MeV. The libraries are used to solve trapped proton flux shielding problems using the discrete ordinates transport code Attila. High-order Legendre expansions (P39) are required to accurately describe the highly anisotropic scattering. Attila applies the extended transport correction allowing accurate three-dimensional solutions at much lower degrees. Particle flux solutions for orbiting spacecraft shielding problems obtained with Attila and MCNPX compare favorably. Coupled multigroup proton/neutron cross-section libraries, for use with deterministic transport codes, can be prepared using NJOY99 and MCNPX. Our results using the Attila code demonstrate that multigroup deterministic methods are computationally efficient alternatives to Monte Carlo simulation.