ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Charles T. Kelsey IV, Anil K. Prinja
Nuclear Technology | Volume 168 | Number 2 | November 2009 | Pages 257-263
Neutron Data | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Protection | doi.org/10.13182/NT09-A9191
Articles are hosted by Taylor and Francis Online.
The limited availability of coupled multigroup proton/neutron cross-section libraries has hampered the use of deterministic transport methods for solving shielding problems involving energetic proton sources. Libraries are developed from evaluated nuclear data for low-energy transport and the physics models of MCNPX for intermediate-energy transport. They allow deterministic solutions of orbiting spacecraft shielding problems. Evaluated cross sections for protons and neutrons are available for many nuclides up to 150 MeV. NJOY99 is used to produce coupled multigroup proton/neutron cross sections from these. For higher energies, MCNPX is run in its cross-section calculation mode where the XSEX3 program is used to tally double-differential cross sections. The XSEX3 program was modified to discretize the cross sections in energy and output Legendre expansions for angular dependence. The NJOY99 and modified XSEX3 output are combined to produce cross-section libraries for energies up to 400 MeV. The libraries are used to solve trapped proton flux shielding problems using the discrete ordinates transport code Attila. High-order Legendre expansions (P39) are required to accurately describe the highly anisotropic scattering. Attila applies the extended transport correction allowing accurate three-dimensional solutions at much lower degrees. Particle flux solutions for orbiting spacecraft shielding problems obtained with Attila and MCNPX compare favorably. Coupled multigroup proton/neutron cross-section libraries, for use with deterministic transport codes, can be prepared using NJOY99 and MCNPX. Our results using the Attila code demonstrate that multigroup deterministic methods are computationally efficient alternatives to Monte Carlo simulation.