ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
T. F. Nichols, L. W. Townsend, J. W. Hines
Nuclear Technology | Volume 168 | Number 1 | October 2009 | Pages 178-181
Dose/Dose Rate | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 1) / Radiation Protection | doi.org/10.13182/NT09-A9122
Articles are hosted by Taylor and Francis Online.
The dose from solar particle events (SPEs) poses a serious threat to the health of astronauts. A method for forecasting the rate and total severity of such events would give time for the astronauts to take actions to mitigate the effects from an SPE. The danger posed from an SPE depends both on the total dose received and the temporal profile of the event. The temporal profile describes how quickly the dose will arrive. Previously developed methods used neural networks to predict the total dose from an event. Later, the ability to predict the temporal profiles was added to the neural network approach. Localized weighted regression (LWR) was then used to determine if better fits with less computer load could be accomplished. Previously, LWR was shown to be able to predict the total dose from an event. LWR is the model being used to forecast the dose and the temporal profile from an SPE. LWR is a nonparametric memory-based technique; it compares a new query to stored sets of exemplar data to make its predictions. It is able to forecast early in an SPE the dose and dose rate for the event. For many events the total dose is predicted within a factor of 2 within 20 min of the beginning of the event. SPEs that are within the training parameters have temporal predictions within a few hours of the start of the event. Using an LWR model, forecasts of the dose and dose rate can be made a few hours after the start of the event. The model is able to forecast most types of events within [approximately]10% accuracy. However, there are a few events that the model fails to forecast accurately.