ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
“The time is now” to advance U.S. nuclear—Part 1
The Nuclear Regulatory Commission is gearing up to tackle an influx of licensing requests and oversight of advanced nuclear reactor technology, especially small modular reactors.
Sarah Scarboro, Nolan Hertel, Eric Burgett, Rebecca Howell, Armin Ansari
Nuclear Technology | Volume 168 | Number 1 | October 2009 | Pages 169-172
Dose/Dose Rate | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 1) / Radiation Protection | doi.org/10.13182/NT09-A9120
Articles are hosted by Taylor and Francis Online.
In the event of a terrorist act involving a radiological agent, internal contamination due to inhalation is a potential health threat. When a large population is potentially impacted, there is need for methodology to serve as an initial screening or triage tool to rapidly identify individuals with significant amounts of internal contamination and to assist in prioritizing collection of large numbers of bioassay samples needed in such an incident. Common handheld radiation detectors and medical devices are tools that can effectively and rapidly screen a large number of people for internal contamination due to gamma-emitting isotopes. This work investigated the use of a common medical device, a thyroid uptake system or thyroid probe, in screening for internal contamination in individuals. The response of a thyroid uptake system in such a situation can be estimated by using a validated Monte Carlo model of the thyroid uptake system and various human phantoms. A computational model of the thyroid uptake system was built using the Los Alamos Particle Transport Code, MCNP Version 5. The validation of this computational model was demonstrated by comparisons to a series of benchmark measurements using the actual device and six isotopes with a range of gamma-ray emission energies.