ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. García, J. Sanz, P. Sauvan, F. Ogando, D. López, A. Mayoral, V. Blideanu, C. Moreno
Nuclear Technology | Volume 168 | Number 1 | October 2009 | Pages 132-138
Dose/Dose Rate | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 1) / Radiation Protection | doi.org/10.13182/NT09-A9113
Articles are hosted by Taylor and Francis Online.
Before starting with the construction of the International Fusion Materials Irradiation Facility, the objective of the Engineering Validation and Engineering Design Activities (EVEDA) phase will be to demonstrate feasibility of design. For this EVEDA prototype, analysis of the dose rate evolution during the beam-off phase is necessary for radioprotection and maintenance feasibility purposes. The key points for determining the dose rates of the beam-off phase are on one hand the neutron source produced along the accelerator beam line and on the other hand the deuteron losses giving rise to this neutron source.A new methodology to compute the neutron source coming from the deuteron interactions with the intercepting material as well as with the deuterium previously implanted has been developed. This new procedure consists of evaluation of the low-energy deuteron-induced neutron source that is not calculated by most transport codes and assessment of the deuterium concentration evolution in the material, which is generally not taken into account in this type of calculation. The impact of this new approach on the neutron source and dose rate results is very relevant.In addition, different sets of deuteron losses computed during the last 3 yr have been compared and used for neutron activation and dose rate calculations. The effect of the deuteron losses upon neutron source production and residual dose rates in the vicinity of the accelerator components is evaluated, and implications for hands-on maintenance activities are discussed. The impact of the differences in the sets of deuteron losses has been found to be very important for dose rate evaluations. Using the most recent deuteron loss information, we obtain dose rate values more than one order of magnitude lower than those obtained using the former data.