ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Tatsuhiko Sato, Daiki Satoh, Akira Endo, Nobuhiro Shigyo, Hiroshi Yasuda, Masashi Takada, Kazuaki Yajima, Takashi Nakamura
Nuclear Technology | Volume 168 | Number 1 | October 2009 | Pages 113-117
Dose/Dose Rate | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 1) / Radiation Protection | doi.org/10.13182/NT09-A9109
Articles are hosted by Taylor and Francis Online.
To improve radiation safety in high-energy accelerator facilities, the authors have been developing the new radiation dose monitor device DARWIN: Dose monitoring system Applicable to various Radiations with WIde energy raNges. DARWIN is composed of (a) a phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6Li, and (b) a data acquisition (DAQ) system for digital analysis of the waveform of the scintillator signals. The DAQ system was recently updated in order to apply DARWIN in monitoring dose rates in radiation fields having time structure, introducing an originally developed module based on a field-programmable gate array. To examine the performance of DARWIN placed in radiation fields composed of varieties of particles over wide energy ranges, the authors mounted DARWIN on a jet aircraft and measured neutron, photon, muon, electron, and positron dose rates at high altitudes. The measured dose rates excellently agreed with the corresponding data calculated by EXPACS over a wide altitude range. This agreement indicates the applicability of DARWIN to dose monitoring in complex radiation fields such as those in high-energy accelerator facilities and aircrafts.