ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Phillip J. Taddei, Dragan Mirkovic, Jonas D. Fontenot, Annelise Giebeler, Yuanshui Zheng, Uwe Titt, Shiao Woo, Wayne D. Newhauser
Nuclear Technology | Volume 168 | Number 1 | October 2009 | Pages 108-112
Dose/Dose Rate | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 1) / Radiation Protection | doi.org/10.13182/NT09-A9108
Articles are hosted by Taylor and Francis Online.
The aim of this study was to quantify stray radiation dose from neutrons emanating from a proton treatment unit and to evaluate methods of reducing this dose for a pediatric patient undergoing craniospinal irradiation. The organ equivalent doses and effective dose from stray radiation were estimated for a 30.6-Gy treatment using Monte Carlo simulations of a passive scattering treatment unit and a patient-specific voxelized anatomy. The treatment plan was based on computed tomography images of a 10-yr-old male patient. The contribution to stray radiation was evaluated for the standard nozzle and for the same nozzle but with modest modifications to suppress stray radiation. The modifications included enhancing the local shielding between the patient and the primary external neutron source and increasing the distance between them. The effective dose from stray radiation emanating from the standard nozzle was 322 mSv; enhancements to the nozzle reduced the effective dose by as much as 43%. These results add to the body of evidence that modest enhancements to the treatment unit can reduce substantially the effective dose from stray radiation.