ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Mark W. Shaver, L. Eric Smith, Richard T. Pagh, Erin A. Miller, Richard S. Wittman
Nuclear Technology | Volume 168 | Number 1 | October 2009 | Pages 95-100
Dose/Dose Rate | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 1) / Radiation Protection | doi.org/10.13182/NT09-A9106
Articles are hosted by Taylor and Francis Online.
Monte Carlo methods are typically used for simulating radiation fields around gamma-ray spectrometers and pulse-height tallies within those spectrometers. Deterministic codes that discretize the linear Boltzmann transport equation can offer significant advantages in computational efficiency for calculating radiation fields, but stochastic codes remain the most dependable tools for calculating the response within spectrometers. For a deterministic field solution to become useful to radiation detection analysts, it must be coupled to a method for calculating spectrometer response functions. This coupling is done in the RADSAT toolbox.Previous work has been successful using a Monte Carlo boundary sphere around a handheld detector. It is desirable to extend this coupling to larger detector systems such as the portal monitors now being used to screen vehicles crossing borders. Challenges to providing an accurate Monte Carlo boundary condition from the deterministic field solution include the greater possibility of large radiation gradients along the detector and the detector itself perturbing the field solution, unlike smaller detector systems. The method of coupling the deterministic results to a stochastic code for large detector systems can be described as spatially defined rectangular patches that minimize gradients.The coupled method was compared to purely stochastic simulation data of identical problems, showing the methods produce consistent detector responses while the purely stochastic run times are substantially longer in some cases, such as highly shielded geometries. For certain cases, this method has the ability to faithfully emulate large sensors in a more reasonable amount of time than other methods.