ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Antoaneta Roca, Yuan-Hao Liu, Ray Moss, Finn Stecher-Rasmussen, Sander Nievaart
Nuclear Technology | Volume 168 | Number 1 | October 2009 | Pages 29-34
Detectors | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 1) / Radiation Protection | doi.org/10.13182/NT09-A9096
Articles are hosted by Taylor and Francis Online.
The neutron and gamma dose in boron neutron capture therapy (BNCT) can be determined by using ionization chambers of different materials. However, inexplicable results, such as negative doses, are sometimes obtained. Computer simulations using MCNPX can help one to understand the behavior of ionization chambers. This paper deals with a part of this investigation: the contribution of protons to the total measured charge in a tissue equivalent (TE) ionization chamber that is flushed with methane-based TE gas. The inherent problem is that the Monte Carlo code MCNPX cannot track protons below 1 MeV.A custom-made program, called Proton Produced Ionization Chamber Charge (PPICC), calculates the deposited energy and thus the charge in the TE gas per proton. For this, it uses the stopping powers for protons in TE plastic and gas. MCNPX provides the total number of protons produced by all neutron interactions near the gas. To check this new procedure, measurements and simulations have been performed using a validated mixed beam of neutrons and gammas. The neutron fluence consists of 12% fast neutrons and 87% epithermal neutrons. In one setup the chamber is free-in-air (epithermal/fast neutron field) and in the other is in a cubic polymethylmethacrylate phantom at 25 mm depth (thermal/epithermal neutron field).The total charge is the sum of the charges due to electrons, originating from primary and neutron-induced gammas, and protons from 1H(n,n)1H and 14N(n,p)14C reactions. The total measured and calculated charges in the two setups have acceptable uncertainties and are in good agreement. The charge collected in a TE ionization chamber can be simulated in a mixed field of neutrons and gammas. The charge resulting from proton recoil in the gas is unexpectedly large.