ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
H. Vincke, D. Forkel-Wirth, H. G. Menzel, S. Roesler, C. Theis, M. Widorski, K. Hatanaka, H. Yashima, T. Nakamura, S. Taniguchi, N. Nakao, A. Tamii
Nuclear Technology | Volume 168 | Number 1 | October 2009 | Pages 5-10
Detectors | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 1) / Radiation Protection | doi.org/10.13182/NT09-A9092
Articles are hosted by Taylor and Francis Online.
Radiation monitoring during operation of CERN's high-energy accelerators in general, and the Large Hadron Collider and its experiments in particular, poses a major challenge due to the stray radiation fields, which are characterized by a complex particle composition and a wide range of energies. In order to monitor ambient doses around workplaces and inside the machine tunnel, high-pressure ionization chambers (so-called IG5) and air-filled ionization chambers under atmospheric pressure (PMI) will be used. Because of the complexity of the radiation field, standard gamma or neutron radiation sources are not applicable to accurately calibrate monitors used in such environments. Hence, the use of Monte Carlo simulation programs like FLUKA is indispensable to obtain an appropriate monitor calibration. Following this idea the response of the aforementioned monitors to mixed particle fields ranging from thermal energies to several giga-electron-volts was simulated. Because neutrons are the main contributor to total dose at many locations around the accelerators, dedicated neutron experiments were carried out at the Research Center for Nuclear Physics, Osaka University, utilizing quasi-monoenergetic beams of 250 and 392 MeV to benchmark the simulated detector responses. Good agreement was found at 392 MeV, whereas at 250 MeV the calculations predicted considerably higher readings of the detector than the ones observed experimentally.