ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
A. B. Rothman, D. G. Graczyk
Nuclear Technology | Volume 167 | Number 3 | September 2009 | Pages 410-420
Technical Paper | Reprocessing | doi.org/10.13182/NT09-A9080
Articles are hosted by Taylor and Francis Online.
In the ammonium diuranate (ADU) process, UF6 is reacted with water, and the acidic solution of uranyl fluoride is treated with aqueous ammonia to precipitate ammonium polyuranate for subsequent reduction to UO2 and production of fuel pellets for commercial nuclear reactors. Our experiments simulated adding aqueous ammonia to the reaction products of UF6 and water in typical ADU processes. Chemical and X-ray diffraction analysis of products from the experiments are consistent with postulated chemical equilibria in which solids with structures close to that of ammonium polyuranate are formed from co-precipitation of the NH4+(aq) cation with (previously unreported) anions of the form UO2F3-x(OH)x-(aq). More efficient separations of solid products were obtained at NH4OH:UF6 ratios of 19 or greater, with x closer to the value of 3 for the hypothetical formation of pure ammonium polyuranate. Supplementary experiments in the current study and a previous study in our laboratory indicated that nominal uranium concentrations of 90 mg/l in the filtrate resulting from such separations could be reduced to microgram per liter levels by batch mixing a 1-to-2.5 aqueous diluate of the filtrate with the Diphonix® ion exchange resin. Our study further demonstrated that reaction of the purified NH4OH-NH4F diluate with aqueous Ca(OH)2 at 80 to 90°C could produce essentially uranium-free CaF2 and an ammonia distillate, as useful waste-conversion end products from a modified ADU process.