ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
A. B. Rothman, D. G. Graczyk
Nuclear Technology | Volume 167 | Number 3 | September 2009 | Pages 410-420
Technical Paper | Reprocessing | doi.org/10.13182/NT09-A9080
Articles are hosted by Taylor and Francis Online.
In the ammonium diuranate (ADU) process, UF6 is reacted with water, and the acidic solution of uranyl fluoride is treated with aqueous ammonia to precipitate ammonium polyuranate for subsequent reduction to UO2 and production of fuel pellets for commercial nuclear reactors. Our experiments simulated adding aqueous ammonia to the reaction products of UF6 and water in typical ADU processes. Chemical and X-ray diffraction analysis of products from the experiments are consistent with postulated chemical equilibria in which solids with structures close to that of ammonium polyuranate are formed from co-precipitation of the NH4+(aq) cation with (previously unreported) anions of the form UO2F3-x(OH)x-(aq). More efficient separations of solid products were obtained at NH4OH:UF6 ratios of 19 or greater, with x closer to the value of 3 for the hypothetical formation of pure ammonium polyuranate. Supplementary experiments in the current study and a previous study in our laboratory indicated that nominal uranium concentrations of 90 mg/l in the filtrate resulting from such separations could be reduced to microgram per liter levels by batch mixing a 1-to-2.5 aqueous diluate of the filtrate with the Diphonix® ion exchange resin. Our study further demonstrated that reaction of the purified NH4OH-NH4F diluate with aqueous Ca(OH)2 at 80 to 90°C could produce essentially uranium-free CaF2 and an ammonia distillate, as useful waste-conversion end products from a modified ADU process.