ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Koichi Asakura, Kentaro Takeuchi, Takayoshi Makino, Yoshiyuki Kato
Nuclear Technology | Volume 167 | Number 3 | September 2009 | Pages 348-361
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT09-A9075
Articles are hosted by Taylor and Francis Online.
Technological feasibility of a simplified mixed-oxide (MOX) pellet fabrication process, the short process, was studied. About 300 g of microwave heating denitrated (MH)-MOX powder with adjusted plutonium content to 30% could be successfully processed by a tumbling granulator for subsequent pelletizing and sintering processes. The granulated 30%PuO2-MOX powder could be pressed into green annular pellets directly and smoothly when using a die wall lubrication method. The pellet tensile strengths were compared for a granulated molybdenum powder that has similar characteristics to those of granulated 30%PuO2-MOX powder, and they were higher for pellets obtained when using the die wall lubrication method than when using the conventional powder mixing method. The amount of additives in the green pellets could be controlled at a low value of 0.06 wt% in this process. It is, therefore, possible to carry out dewaxing and sintering of green pellets in the same furnace. By controlling the average particle sizes of granulated 30%PuO2-MOX powders, pellets with more than 95% theoretical density could be obtained after sintering at 1700°C for 2 h.As a result, it can be concluded that the short process is technologically feasible to fabricate MOX annular pellets.