ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
K. Samec, R. Z. Milenkovic
Nuclear Technology | Volume 167 | Number 2 | August 2009 | Pages 288-303
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT09-A8964
Articles are hosted by Taylor and Francis Online.
The successful outcome of the liquid-metal leak test was a key event in the MEGAPIE (MEGAwatt PIlot Target Experiment) project, a multinational endeavor aimed at developing a reliable neutron spallation source operating with dense liquid metal. Indeed, the leak test validated the containment design, which was a regulatory requirement for demonstrating that a liquid-metal source could be operated safely. Furthermore, unique temperature and stress measurements were recorded that agreed well with test predictions published ahead of the test. This paper outlines the approach taken for predicting the consequences of a liquid-metal leak, with particular emphasis on a simplified one-phase calculation method that may be useful in the future for predicting the impact of accidental liquid-metal leaks at modest expense in terms of CPU time.Most of the assumptions underpinning the original analytical predictions necessarily erred on the conservative side. Therefore, the boundary conditions applied to the original analysis, such as the exit flow rate of the liquid-metal jet, are critically reviewed in this paper to improve on the existing agreement between the predictions and the experimental data.