ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Georgeta Radulescu, Donald E. Mueller, John C. Wagner
Nuclear Technology | Volume 167 | Number 2 | August 2009 | Pages 268-287
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT09-A8963
Articles are hosted by Taylor and Francis Online.
This paper provides insights into the neutronic similarities between a representative high-capacity rail-transport cask containing typical pressurized water reactor (PWR) spent nuclear fuel assemblies and critical reactor state-points, referred to as commercial reactor critical (CRC) state-points. Forty CRC state-points from five PWRs were analyzed, and the characteristics of CRC state-points that may be applicable for validation of burnup-credit criticality safety calculations for spent fuel transport/storage/disposal systems were identified. The study employed cross-section sensitivity and uncertainty analysis methods developed at Oak Ridge National Laboratory and the TSUNAMI set of tools in the SCALE code system as a means to investigate neutronic similarity on an integral and nuclide-reaction-specific level. The results indicate that except for the fresh-fuel-core configuration, all analyzed CRC state-points are either highly similar, similar, or marginally similar to the representative high-capacity cask containing spent nuclear fuel assemblies with burnups ranging from 10 to 60 GWd/tU in terms of their shared uncertainty in keff due to cross-section uncertainties. On a nuclide-reaction-specific level, the CRC state-points provide significant coverage, in terms of neutronic similarity, for most of the actinides and fission products relevant to burnup credit. Hence, in principle, the evaluated CRC state-points could serve as part of a set of benchmark experiments for determining a bias and bias uncertainty to be applied to the calculated keff of a spent fuel transport/storage/disposal system to correct for approximations in computational methods and errors and uncertainties in nuclear data. Note, however, that an evaluation to quantify the uncertainties associated with various CRC modeling parameters (e.g., fuel isotopic compositions, physical characteristics of reactor core components, and reactor operating history information), which has relevance to the use of these critical configurations for bias determination, was not performed as part of this study.