ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Michael L. Corradini
Nuclear Technology | Volume 167 | Number 1 | July 2009 | Pages 145-156
Technical Paper | NURETH-12 / Thermal Hydraulics | doi.org/10.13182/NT09-A8858
Articles are hosted by Taylor and Francis Online.
There has been an ongoing search for more efficient power plant designs over the last few decades. For fossil-fueled power plants, this has resulted in the development of supercritical water Rankine steam cycles in the 1960s and most recently ultra-supercritical water power cycle systems. In addition, the use of supercritical fluids has been proposed for power cycles as part of the Generation IV (Gen-IV) advanced nuclear reactor designs, since these systems can also provide for higher thermal efficiency and reduced overall costs. For either of these power plant designs, both supercritical water and supercritical carbon dioxide have been considered as working fluids for either Rankine or Brayton cycle designs for a wide range of Gen-IV reactor designs, e.g., supercritical water reactor, high-temperature gas-cooled reactor, and liquid-metal-cooled reactor. In all of these designs, it has become quite apparent that research and development (R&D) investment in innovations in supercritical fluid thermal hydraulics and related materials issues is required to advance the state of the art in more efficient, cheaper, and safer nuclear power system technologies. One can view supercritical fluid transport phenomena as a base technology R&D need that requires more fundamental understanding in a number of areas. The Wisconsin Institute of Nuclear Systems at the University of Wisconsin-Madison has been investigating a range of key phenomena in supercritical fluids involving flow stability, critical flow phenomena, heat transfer enhancement and degradation, as well as materials corrosion issues. This paper summarizes our efforts in thermal hydraulics in order to provide a context for base technology R&D in supercritical fluids to advance Gen-IV systems.