ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Akira Yamaguchi, Takashi Takata, Hiroyuki Ohshima, Akikazu Kurihara
Nuclear Technology | Volume 167 | Number 1 | July 2009 | Pages 118-126
Technical Paper | NURETH-12 / Thermal Hydraulics | doi.org/10.13182/NT09-A8856
Articles are hosted by Taylor and Francis Online.
Sodium-water reaction is a design-basis accident of a sodium fast reactor. A breach of the heat transfer tube in a steam generator (SG) results in contact of liquid sodium with water. The typical phenomenon is that the pressurized water blows off and is mixed with the liquid sodium surrounding SG tubes. The design and safety concern is a possibility of the secondary failure of nearby heat transfer tubes that could cause undesirable development of the accident. One needs to evaluate the temperature transients of the heat transfer tubes in the reaction region for safety evaluation. In the present study, a computational method is developed for this purpose. It solves the sodium thermal hydraulics and the heat conduction in the adjacent heat transfer tubes. An experiment performed at the Japan Atomic Energy Agency is analyzed with the method developed in this study. It is found that analyzed temperatures are in good agreement with the experimental data. Based on the experimental and computational results, multiphase multicomponent flow characteristics are depicted. Furthermore, the heat transfer coefficient is evaluated using the instantaneous heat flux and temperature obtained from the numerical simulation.