ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Nicholas R. Brown, Seungmin Oh, Shripad T. Revankar, Karen Vierow, Salvador Rodriguez, Randall Cole, Jr., Randall Gauntt
Nuclear Technology | Volume 167 | Number 1 | July 2009 | Pages 95-106
Technical Paper | NURETH-12 / Fuel Cycle and Management | doi.org/10.13182/NT09-A8854
Articles are hosted by Taylor and Francis Online.
The sulfur-iodine (SI) cycle is one of the leading candidates in thermochemical processes for hydrogen production. In this paper a simplified model for the SI cycle is developed with chemical kinetics models of the three main SI reactions: the Bunsen reaction, sulfuric acid decomposition, and hydriodic acid decomposition. Each reaction was modeled with a single control volume reaction chamber. The simplified model uses basic heat and mass balance for each of the main three reactions. For sulfuric acid decomposition and hydriodic acid decomposition, reaction heat, latent heat, and sensible heat were considered. Since the Bunsen reaction is exothermic and its overall energy contribution is small, its heat energy is neglected. However, the input and output streams from the Bunsen reaction are accounted for in balancing the total stream mass flow rates from the SI cycle. The heat transfer between the reactor coolant (in this case helium) and the chemical reaction chamber was modeled with transient energy balance equations. The steady-state and transient behavior of the coupled system is studied with the model, and the results of the study are presented. It was determined from the study that the hydriodic acid decomposition step is the rate-limiting step of the entire SI cycle.