ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Xia Wang, Xiaodong Sun
Nuclear Technology | Volume 167 | Number 1 | July 2009 | Pages 71-82
Technical Paper | NURETH-12 / Thermal Hydraulics | doi.org/10.13182/NT09-A8852
Articles are hosted by Taylor and Francis Online.
In the study of gas-liquid two-phase flows, one challenge is to describe the dynamic changes in flow structure, which can be considerably affected by bubble coalescence and/or disintegration in addition to bubble nucleation and condensation processes. The interfacial structure, to a first-order approximation, may be characterized by the void fraction and a geometric parameter named "interfacial area concentration," the evolution of which can be modeled by an interfacial area transport equation (IATE). A one-group IATE has been developed for bubbly flows in the literature, accounting for three dominant mechanisms: coalescence of bubbles due to random bubble collisions driven by turbulence, coalescence of bubbles due to wake entrainment, and disintegration of bubbles caused by turbulent-eddy impact. The current study is aimed at examining the capability of a computational fluid dynamics code, namely, FLUENT, with the one-group IATE implemented, in predicting two-phase-flow phase distributions. Simulations using the Eulerian multiphase model in FLUENT 6.2.16 have been performed for adiabatic upward bubbly flows in a pipe of 50.8-mm inner diameter with a range of void fractions from 4.9 to 23.1%. The predicted phase distributions yield satisfactory agreement with available experimental data, demonstrating that FLUENT with the IATE can provide a valuable simulation tool for two-phase bubbly flows.