ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Seungjin Kim, Kennard Callender, Gunol Kojasoy
Nuclear Technology | Volume 167 | Number 1 | July 2009 | Pages 20-28
Technical Paper | NURETH-12 / Thermal Hydraulics | doi.org/10.13182/NT09-A8848
Articles are hosted by Taylor and Francis Online.
The present study develops an interfacial area transport equation applicable to an air-water horizontal bubbly flow with a flow restriction. The experiments are performed in a round glass pipe of 50.3-mm inner diameter, along which a 90-deg elbow is installed at L/D = 206.6 from the two-phase mixture inlet. In total, 15 different flow conditions in the bubbly flow regime are studied. The detailed local two-phase flow parameters are acquired by a double-sensor conductivity probe at four different axial locations. The effect of the elbow is evident in the distribution of local parameters as well as in the development of interfacial structures. The elbow clearly promotes bubble interactions resulting in significant changes in both the void fraction and interfacial area concentration. In the present study, the elbow is found to promote the coalescence mechanism while reducing the disintegration mechanism. These geometric effects are also reflected in the axial development of one-dimensional two-phase flow parameters. In the present analysis, the interfacial area transport equation is developed in one-dimensional form via area-averaging based on the existing model for vertical flow. In the averaging process, characteristic nonuniform distributions of the two-phase flow parameters in horizontal two-phase flow are treated mathematically by covariance calculations. Furthermore, the change in pressure due to the minor loss of the elbow is taken into consideration by using a newly developed correlation analogous to Lockhart and Martinelli's. In total, 60 area-averaged data points are employed to benchmark the present model. The present model predicts the data well with an average percent difference of approximately ±10%.