ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Yehong Liao, Karen Vierow
Nuclear Technology | Volume 167 | Number 1 | July 2009 | Pages 13-19
Technical Paper | NURETH-12 / Thermal Hydraulics | doi.org/10.13182/NT167-13
Articles are hosted by Taylor and Francis Online.
In modeling condensation from vapor-gas mixtures with the heat and mass transfer analogy, there are two parallel methods in the literature to account for variable property effects: (a) the property ratio scheme using an empirical factor as a multiplier for the mass flux and (b) the reference property scheme using reference properties to calculate the mass flux. The current work focuses on the reference property scheme and establishes its relation to the property ratio scheme. From condensation boundary layer analysis, the current work proposes a reference mixture composition and a reference mixture temperature, which can be used for calculation of a variety of reference thermodynamic and transport properties. It is demonstrated that the empirical factor in the property ratio scheme used widely in the literature can be obtained from the reference property scheme derived in the current work, and thus, the two parallel methods to account for variable property effects are equivalent. A common mistake in using the reference mixture composition is highlighted as part of this investigation. The reference property scheme presented herein has a theoretical basis and is more accurate over a wide range of conditions than the empirical property ratio scheme. Finally, the reference property scheme is extended to multicomponent gases.