ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Justin D. Talley, Seungjin Kim, Tangwen Guo, Gunol Kojasoy
Nuclear Technology | Volume 167 | Number 1 | July 2009 | Pages 2-12
Technical Paper | NURETH-12 / Thermal Hydraulics | doi.org/10.13182/NT167-2
Articles are hosted by Taylor and Francis Online.
The present study investigates the geometric effects of a 45-deg elbow on the development and distribution of local two-phase flow parameters in horizontal bubbly flow. A round pipe with an inner diameter of 50.3 mm is used as a test section throughout the study. The test section consists of a 90-deg elbow followed farther downstream by a 45-deg elbow. Local two-phase flow parameters and pressure measurements are made at three different axial locations, one upstream and two downstream of the 45-deg elbow. In total, 15 different flow conditions are investigated for the present analysis. At the measurement port just downstream of the 45-deg elbow, the local parameters are acquired in both the vertical and horizontal directions along the radius of the pipe cross section to capture geometric effects of the flow restriction. The local two-phase flow parameters acquired in the present study include void fraction, bubble velocity, interfacial area concentration, and Sauter mean diameter. In view of one-dimensional transport, the local void fraction and interfacial area concentration are area averaged and plotted along the axial direction. The characteristic geometric effects of the flow restrictions are clearly demonstrated in the distribution of the two-phase flow parameters and pressure, as well as their development along the flow direction. The drastic changes in the interfacial area concentration across the elbow suggest that a 45-deg elbow induces significant changes in bubble interaction mechanisms.