ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Min Chull Kim, Inn Seock Kim
Nuclear Technology | Volume 166 | Number 3 | June 2009 | Pages 283-294
Technical Paper | 2007 Space Nuclear Conference / Radiation Protection | doi.org/10.13182/NT08-39
Articles are hosted by Taylor and Francis Online.
The analytic hierarchy process (AHP) provides a decision-analysis framework to model unstructured problems in almost every kind of discipline, whether social science, aerospace engineering, or nuclear reactor safety analysis. As common-cause failure (CCF) has been a major element of incidents and accidents in terrestrial nuclear power reactors because of high redundancy built into the systems and susceptibility of these redundant systems to CCF mechanisms, ad hoc approaches used to be taken to address vulnerabilities to CCF by designers or operating staff of the plants. We show in this paper how the AHP in conjunction with goal-tree success-tree (GTST) methodology can be used to identify an optimal CCF-defense strategy under various constraints (e.g., the largest safety impact, the smallest cost, and the least operator burden). This work demonstrates applicability and effectiveness of the AHP decision-analysis technique in CCF-defense assessment with a novel introduction of the GTST methodology as a tool to construct a hierarchical decision tree for the AHP. The combined approach based on AHP and GTST methodologies can be used not only for CCF-defense assessment but also for any other multicriteria decision analysis requiring priority setting.