ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Z. W. Lin
Nuclear Technology | Volume 166 | Number 3 | June 2009 | Pages 273-282
Technical Paper | 2007 Space Nuclear Conference / Radiation Protection | doi.org/10.13182/NT09-A8841
Articles are hosted by Taylor and Francis Online.
In space radiation calculations it is often useful to calculate the dose or dose equivalent in blood-forming organs (BFOs), the eye, or the skin. It has been customary to use a 5-cm equivalent sphere to approximate the BFO dose. However, previous studies have shown that a 5-cm sphere gives conservative dose values for BFOs. In this study we use a deterministic radiation transport with the Computerized Anatomical Man model to investigate whether the equivalent-sphere model (ESM) can approximate organ doses in space radiation environments. We have determined the organ-specific constant radius parameters and the corresponding average errors of using the ESM at those radius parameters. We find that for galactic cosmic ray (GCR) environments, the ESM with a constant radius parameter works well in estimating the dose and dose equivalent in BFOs, the eye, or the skin, and the average errors of using the ESM are all <2%. For solar particle event (SPE) environments, however, the radius parameters for organ dose or dose equivalent increase significantly with the shielding thickness, and the model works marginally for BFOs but is unacceptable for the eye or the skin. To estimate the dose equivalent in BFOs, for example, the constant radius parameter is determined to be ~10.5 cm for GCR environments and ~7.8 cm for SPE environments, and the corresponding average error of using these radius parameters in the ESM is 0.7% and 17%, respectively.