ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
L. K. Mansur, Y. M. Charara, S. B. Guetersloh, I. Remec, L. W. Townsend
Nuclear Technology | Volume 166 | Number 3 | June 2009 | Pages 263-272
Technical Paper | 2007 Space Nuclear Conference / Radiation Protection | doi.org/10.13182/NT09-A8840
Articles are hosted by Taylor and Francis Online.
Calculations have been carried out to evaluate the effectiveness of a range of carbon- and hydrogen-rich materials for shielding against energetic heavy ions relevant to the galactic cosmic ray spectrum. Experimental work integrated with the calculations included both preparation and characterization of physical properties of candidate materials and measurements of fragmentation (breakup) of ion beams of 16O and 40Ar in the tens of GeV energy range in these materials. We have simulated the fragmentation experiments using both the HETC-HEDS and PHITS high-energy particle transport codes. The purposes of these computational simulations were to investigate the effectiveness as spacecraft personnel shielding of various novel as well as commercially available materials for future lunar and interplanetary missions and to validate the codes against experimental data. In the present contribution we report results of the fragmentation simulations and compare them with examples of the experimental measurements.